
Help file for ppml_fe_bias

Title

ppml_fe_bias - Bias corrections for Poisson Pseudo-Maximum Likelihood (PPML) estimation of gravity models
with two-way and three-way fixed effects.

Syntax

ppml_fe_bias depvar indepvars [if] [in], lambda(varname) i(exp_id) j(imp_id) t(time_id) [options]

exp_id, imp_id, and time_id are variables that respectively identify the origin, destination, and time period associ-
ated with each observation. “lambda” is an input for the conditional mean of each observation. For more details,
please see the “Background” section below. More info can also be found on github.

Description

ppml_fe_bias implements analytical bias corrections described in Weidner & Zylkin (2021) for PPML “gravity”
regressions with two-way and three-way fixed effects, as are commonly used with international trade data and
other types of spatial flows. As shown in Weidner & Zylkin (2021), when the time dimension is fixed, the point
estimates produced by the three-way PPML estimator have an asymptotic incidental parameter bias of order 1/N ,
where N is the number of countries, and the cluster-robust sandwich estimator that is typically used for inference
itself has a downward bias that is also of order 1/N . For two-way PPML, only the standard errors are biased.

Installation

To install the latest version from the official SSC repository, type:

ssc install ppml_fe_bias, replace

Or, to install from github, type:

net install ppml_fe_bias, ///

from("https://raw.githubusercontent.com/tomzylkin/ppml_fe_bias/master/src") replace

Main Options

These options allow you to store results for the bias corrections, select the type of gravity model being used
(two-way or three-way), and stipulate whether an approximation should be used for the bias-corrected variance
matrix.

bias(name) Store bias corrections for coefficients as a Stata matrix.

v(name) Store bias-corrected variance matrix as a Stata matrix.

w(name) Store the expected Hessian matrix (“W”) as a Stata matrix.
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b_term(name) Store the estimated “B”-component of bias in the score for the three-way model that is asso-
ciated with the origin-time fixed effects.

d_term(name) Store the estimated “D”-component of bias in the score for the three-way model that is
associated with the destination-time fixed effects.

beta(name) Pass the coefficients from a prior PPML estimation. When beta coefficients are provided,
a new results table will be produced complete with bias-corrected coefficients and standard
errors.

twoway Specifies that the estimated model is a two-way model with only origin(-time) and destination(-
time) fixed effects. In this case, ppml_fe_bias will only compute a bias correction for the
estimated variance.

nosterr Don’t compute the bias correction for the variance.

approx If “approx” is enabled, the bias correction for the variance will be computed using an ap-
proximation. By default, this approximation is used whenever the number of origin-time and
destination-time fixed effects exceeds 1500 in order to facilitate computation and to avoid
running up against memory constraints. This approximation is only used with three-way
models.

exact Use an exact method for computing the bias-corrected variance, even if the number of origin-
time and destination-time fixed effects exceeds 1500.

notable Suppress results table.

Background

PPML estimation of gravity models with two-way and three-way fixed effects is very popular in the study of inter-
national trade and other similar applications that involve bilateral flows (such as urban commuting or interregional
migration). The two-way gravity model may be written as

yi jt = exp
[
αit +γ jt + x′i jtβ

]
ωi jt, (1)

where yi jt is a flow from origin i to destination j at time t, αit and γ jt respectively are origin-time and destination-
time fixed effects, β are the coefficients we want to estimate (typically variables that influence bilateral frictions,
such as the distance between i and j), and ωi jt ≥ 0 serves as an error term. The three-way model then adds a
“country-pair” fixed effect, ηi j :

yi jt = exp
[
αit +γ jt +ηi j + xi jtβ

]
ωi jt . (2)

In the latter model, the advantage of the third fixed effect ηi j is that it absorbs all time-invariant determinants of
flows between i and j. As discussed in Baier & Bergstrand (2007), the use of these fixed effects therefore allows
us to identify the elements of β based on time-variation in trade within pairs after first conditioning on αit and γ jt .
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This approach is especially well suited for estimating the effects of bilateral trade agreements and other similar
policy variables and is currently recommended for this purpose by several leading references on gravity estimation
(e.g., Head & Mayer, 2014; Yotov, Piermartini, Monteiro, & Larch, 2016).

Weidner & Zylkin (2021)’s analysis identifies several econometric issues that arise with the three-way model, but
their method for correcting the standard errors of the three-way model also can be adapted to address a similar issue
with the two-way model. Focusing on the three-way model for now, notice that the first-order conditions of PPML
allow us to “profile out” the pair fixed effect ηi j using exp(ηi j) =

∑
t yi jt/

∑
t exp

[
αit +γ jt + xi jtβ

]
. Applying this

substitution then respectively gives us the following modified first-order conditions for the remaining parameters
αit , γ jt , and β:

∑
j

[
yit −

µi jt∑T
s=1 µi js

T∑
s=1

yis

]
= 0,

∑
i

[
yit −

µi jt∑T
s=1 µi js

T∑
s=1

yis

]
= 0,

∑
i,j,t

xi jt

[
yit −

µi jt∑T
s=1 µi js

T∑
s=1

yis

]
= 0,

where µi jt := exp
[
αit +γ jt + xi jtβ

]
. In this way, the three-way gravity model is effectively re-expressed as a

two-way FE-Multinomial model, such that we can be assured that the otherwise-large number of fixed effects
does not pose an issue for the consistency of our estimate for β. This is an important observation because the
typical alternatives to PPML for gravity estimation (e.g., OLS, Gamma PML) can be shown to be inconsistent
in this setting. At the same time, the two-way representation of the model also brings to mind the results from
Fernández-Val & Weidner (2016) for the asymptotic bias of two-way nonlinear models due to the incidental
parameter problem. The three-way gravity model is a more complicated model than the ones studied in Fernández-
Val & Weidner (2016), but Weidner & Zylkin (2021) nonetheless demonstrate that an analogous result occurs for
three-way PPML whenever the time dimension is fixed. Specifically, if I is the number of origins and J is the
number of destinations, then β will have an asymptotic bias of the form

1
I

Bβ +
1
J

Dβ,

that is, an asymptotic bias that vanishes only as both I and J →∞. Because the asymptotic standard error itself
shrinks with 1/

√
I J as I and J become large, we have the discomfiting result that uncorrected confidence intervals

will be systematically off-center even in moderately large samples because of the large relative magnitude of the
bias in relation to the standard error.

Weidner & Zylkin (2021) provide a more detailed derivation of the bias in β based on a second-order Taylor
expansion of the expected profile score around the correct values of the α- and γ-parameters. This expansion
also provides the basis for the analytical bias correction performed by this command. In addition to this cor-
rection, ppml_fe_bias also addresses a related issue that affects the cluster-robust standard errors that are typ-
ically used with the three-way model. The latter problem is effectively a version of the more general result
that “heteroskedasticity-robust” standard errors tend to be downward-biased in small samples (cf., MacKinnon &
White, 1985; Imbens & Kolesar, 2016), only this problem is exacerbated here by the slow convergence of the fixed
effects, which causes the bias in the standard error to vanish at only the relatively slow rate of 1/

√
I ∨1/

√
J as I

and J become large. A similar issue also arises in two-way models (Egger & Staub, 2015; Jochmans, 2016; Pfaf-
fermayr, 2019); thus, ppml_fe_bias has been programmed to provide bias-corrected standard errors for two-way
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models as well as three-way models (by making use of the “twoway” option in the former case). The β-coefficients
obtained using two-way PPML estimation do not suffer from any asymptotic bias, however, as originally shown
by Fernández-Val & Weidner (2016).

Examples

These examples follow the sample .do file included along with this command. The data set used in this .do file
consists of a panel of 65 countries trading with one another over the years 1988-2004, using every 4 years. The
trade data uses aggregate manufacturing trade flows from UN COMTRADE, with information on FTAs taken
from the NSF-Kellogg database maintained by Scott Baier and Jeff Bergstrand and other covariates taken from
the CEPII gravity data set created by Head, Mayer, & Ries (2010). The computation of the PPML regression
relies on the ppmlhdfe Stata command created by Correia, Guimarães, & Zylkin (2020).

Three-way example. Using ppmlhdfe, the appropriate syntax for specifying a three-way gravity model with
exporter-time, importer-time, and exporter-importer fixed effects and standard errors that are clustered by pair
would be

ppmlhdfe trade fta, a(imp#year exp#year imp#exp) cluster(imp#exp) d

The “d” option is needed to facilitate obtaining values for the conditional mean of the dependent variable, which
ppml_fe_bias will need in order to construct the necessary expressions for the bias corrections. We next create
a new variable “lambda” containing the conditional mean from the regression as well as a matrix “beta” for the
estimated coefficient on fta. We then pass these results along with the data to ppml_fe_bias:

predict lambda

matrix beta = e(b)

ppml_fe_bias trade fta, i(expcode) j(impcode) t(year) lambda(lambda) beta(beta)

The resulting output shows there is an upward bias of about 0.008 in the estimated PPML coefficient for fta.
While the bias-corrected estimate is not overly different from the original uncorrected one (0.170 vs 0.178), it is
important to keep in mind this bias is about 22% of the estimated standard error, which is easily large enough
to make a meaningful difference for hypothesis testing in general cases. Consistent with the results of Weidner
& Zylkin (2021), the estimated standard error is also found to be biased: the bias-corrected standard error is
itself about 20% larger than the uncorrected standard error, and the lower bound of the estimated 95% confidence
interval after both of these corrections are applied is substantially lower than what would be found otherwise
(0.086 versus 0.109). While these results were obtained for a moderate number of countries (I = J = 65), it is
important to note that Weidner & Zylkin (2021)’s results imply that the magnitudes of these biases are likely to
depend on the distribution of the data, even for ostensibly large data sets. Thus, it is recommended that researchers
implement these checks whenever feasible as a matter of good practice.

Two-way example. Using the same example data set and .do file, a typical two-way gravity regression would be

ppmlhdfe trade ln_distw contig colony comlang_off comleg fta, ///

a(imp#year exp#year) cluster(imp#exp) d
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where we now include some covariates that would otherwise be absorbed by the exporter-importer fixed effect
from the three-way model, such as the log of bilateral distance and the sharing of a colonial relationship. The code
to compute bias-corrected standard errors and to present the results in a nicely formatted table would be

predict lambda_2way

matrix beta_2way = e(b)

ppml_fe_bias trade ln_distw contig colony comlang_off comleg fta, ///

i(expcode) j(impcode) t(year) lambda(lambda_2way) beta(beta_2way) twoway

As the results show, the implied downward biases in the standard error for the two-way model are similar to the
corresponding bias found for fta coefficient in the three-way model, generally ranging between 20% and 26%.
As shown by Fernández-Val & Weidner (2016), the coefficients themselves are asymptotically unbiased in this
case.

Storing results. So long as an input is given for the “beta” matrix, ppml_fe_bias will store results for the bias-
corrected coefficients and variance matrix using ereturn post. This allows users to access these results using
the post-estimation operators e(b) and e(V). It also makes it possible to use ppml_fe_bias in conjunction with
standard table-formatting commands such as estout or estimates table.

Approximation for the adjusted variance. Depending on the size of the data, it may be necessary to use an
approximation method to compute the necessary bias correction for the cluster-robust variance matrix in the three-
way model. Because the details behind this approximation are mathematically complex, they have been left for
the end of this document.

Advisory

This is an advanced technique that requires a basic understanding of PPML estimation and of the three-way
gravity model. I would recommend either Yotov, Piermartini, Monteiro, & Larch (2016) or Larch, Wanner, Yotov,
& Zylkin (2019) for further reading on these topics. For essential reading on two-way gravity estimation, see
Head & Mayer (2014).

This is version 1.1 of this command. If you believe you have found an error that can be replicated, or have other
suggestions for improvements, please feel free to contact me.

Suggested citation

If you are using this command in your research, I would appreciate if you would cite

• Weidner, Martin and Thomas Zylkin. “Bias and Consistency in Three-way Gravity Models." arXiv preprint
arXiv:1909.01327 (2021).

The code used in this command implements the bias corrections described in Section 3 of our paper for the three-
way model. The bias correction for the variance of the two-way model is discussed in the appendix. Depending
on interest, future versions of this command could add further options for multi-way clustering, multi-industry
models, and/or dynamic models.
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Further Reading

• Gravity estimation: Head & Mayer (2014); Yotov, Piermartini, Monteiro, & Larch (2016)

• Bias corrections for two-way models: Fernández-Val & Weidner (2016)

• Bias corrections for other three-way models aside from PPML: Fernández-Val & Weidner (2018); Hinz,
Stammann, & Wanner (2019)

• Fast methods for computing PPML models with multiple levels of fixed effects: Correia, Guimarães, &
Zylkin (2020); Larch, Wanner, Yotov, & Zylkin (2019); Stammann (2018)

• Other methods for correcting standard errors in this setting: Pfaffermayr (2021)
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Notes on approximation

As is apparent from equation (13) from Weidner & Zylkin (2021), constructing the bias correction for the vari-
ance in the three-way model requires computing objects of the form H̄i j di jW (φ)−1d′i j , where H̄i j captures the
second derivative of the multinomial likelihood with respect to the the α- and γ-parameters associated with pair
i j, di j is an T × [dim(α)+ dim(γ)] matrix of dummy variables, and W (φ) := [I(J −1)]−1 ∑

i,j d′i j H̄i j di j gives us the
expected Hessian associated with these parameters.1

From a computational perspective, the obvious problem here is that the inverse expected Hessian matrix W (φ)−1

could be difficult to calculate if the number of α- and γ-parameters is large. For example, for a trade data set with
150 countries and 10 years, we would have [dim(α)+ dim(γ)] ≈ 10×150×2 = 3,000, and the dimension of W (φ)

would be roughly 3,000×3,000. While this is not necessarily “large” in the context of what modern techniques for
large matrix inversion can theoretically handle, the series of calculations needed to compute the adjusted variance
can nonetheless become sufficiently complex that Stata can and will run up against memory constraints and may
even exit with an error.

As a consequence, ppml_fe_bias uses an approximation based on the method of alternating projections to com-
1If the data includes Xii terms, replace J −1 with J here and in what follows.
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pute the bias-corrected variance when the data is sufficiently large. The idea behind this approximation follows
from the fact that the H̄i j di jW (φ)−1d′i j terms can instead be obtained by first computing the HDFE-PPML “an-
nihilator” matrix I −M′D(D

′

H̄D)−1D
′

H̄, where H̄ is an [dim(α)+ dim(γ)] × [dim(α)+ dim(γ)] matrix with the
H̄i j expected Hessian terms arranged along its diagonal, D is an I(J −1)T ×[dim(α)+ dim(γ)] matrix that stacks
each of the di j matrices in the appropriate order, and M is a weighted demeaning operator such that MΛ = H̄,
with Λ := diag(λi jt) a diagonal matrix with the conditional mean λi jt along its diagonal. Each of the T ×T blocks
that lie along the diagonal of M′D(D

′

H̄D)−1D
′

H̄ can be shown to be equal to [Hi j di jW
(φ)−1
N d′i j Mi j]

′, with the
normalization matrix Mi j playing an innocuous role.

The annihilator matrix is an important theoretical construct from the literature on high-dimensional fixed effects
estimation, where it is known, for example, that x̃∗i jt := [(I −M′D(D

′

H̄D)−1D
′

H̄)X]i jt gives us an appropriately
“within transformed” version of the regressor xi jt that purges it of any partial correlation with the fixed effects
when the estimator is PPML. One way to obtain this matrix is via the method of alternating projections (see Stam-
mann, 2018), an iterative process in which the identity matrix is repeatedly differenced by a series of weighted
differencing operators reflecting the different fixed effects dimensions in the model (it, jt, and i j). The values
for Mi j di jW

(φ)−1
N d′i j H̄i j that are left after the first several iterations in this process are easy to calculate without in-

volving any large matrix operations, and cutting off the calculation of the annihilator matrix at this point generally
results in a reasonable approximation for the adjusted variance that still leads to significantly improved inferences.

To be more precise, define M (it) as M ( jt) as I(J − 1)T × I(J − 1)T differencing operators such that M (it)X and
M ( jt)X respectively demean X with respect to X

(it)
and X

( jt)
, where

X
(it)
=

∑
j

λi jt∑
n λint

Xi jt∀i,t, X
( jt)
=

∑
i

λi jt∑
m λmjt

Xi jt∀ j,t

are weighted means across it and jt. It is also useful to note that the previously-defined matrix M itself is a
difference operator that will difference X with respect to its weighted mean across i j. With these objects in hand,
we can obtain the annihilator matrix by repeatedly differencing X with respect to the three fixed effect dimensions:

INNT −M′D(D
′

H̄D)−1D
′

H̄ = lim
r→∞

(
M (it)M ( jt)M

)r
.

To formulate a convergent sequence for solving for the annihilator, we can express the current value after having
performed 3r −1 matrix multiplications as

A(r) = M (it)M ( jt)M A(r−1) forr ≥ 1,

with A(0) = I. A seemingly natural algorithm would then involve repeatedly iterating on A(r) until convergence.
However, because this algorithm would require repeatedly multiplying large (I(J − 1)T × I(J − 1)T) matrices by
one another, obtaining an exact solution in this manner is likely to be slow or even impractical. Instead, a feasible
approximation can be constructed by taking the result after using just the four differencing terms, i.e.,

INNT −M′D(D
′

H̄D)−1D
′

H̄ ≈ M A(1) = M M (it)M ( jt)M .

8



A key advantage of this approximation is that the T ×T blocks needed for the variance adjustment that lie along
the diagonal of M A(1) can be computed directly without performing any large matrix multiplications.2 Despite the
simplicity of this approach, it can be shown to work reasonably well for improving inferences, especially when
compared to the alternative of using an uncorrected variance, which should generally be avoided. In the exercises
included in the sample .do file, for example, the above approximation yields a standard error for fta of 0.0429,
whereas an exact calculation gives a standard error of 0.0420. The original, uncorrected standard error is only
0.0350.3

2While these operators could have been applied in a different order instead, this order was chosen based on some simple testing and
subject to the constraint that the underlying I(J −1)T × I(J −1)T matrices were not to be used.

3Of course, it would be ideal if a method could be devised for recovering the variance correction terms exactly without sacrificing
too much computational efficiency. At the moment, techniques for recovering these types of objects in high-dimensional settings remain
an area of active research. See Kline, Saggio, & Sølvsten (2018, Appendix B.3) for another approximation method based on random
projections that could potentially be applied here.
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